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WHAT IS CLASSICAL MOLECULAR DYNAMICS

(MD)?

= Classical MD is a way to simulate the behavior of explicit

particles, including atoms, ions, and vastly more complex
materials.

= Particles interact via relatively simple analytical potential
energy functions.

= From the potential energy, we compute forces, torques and
iIntegrate Newton’s equations

= Can treat millions of particles (especially new parallel GPU-
based codes)

= Usually obtains dynamics on the order of nanosecond (full
atom), microsecond (coarse-grained), or second (very
coarse-grained)
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“MECHANICAL" MODELS

910 NATURE December 10, 1960 .. :ss

Co-ordination of Randomly Packed Spheres

In following up earlier work on a geometrical
model of liguid structure!, we have been examining
more closely the precise mutual co-ordination of
spheres when arranged at random and more-or-less
closely packed. As can be seen from Dr. Scott’s
communication, which came to hand during this

investigation, there are at least two types of random
packing : random close packing with an occupied
volume of 0-64, and random loose packing with one
of 0:60. The first of these packings we had alrcady
studied with wax balls contained inside a rubber
balloon. @ B

Realizing, however, that the arrangement
studied was liable to be distorted from that of random

ose 3 : 3 : Fig. 4. Diagram of method of marking (e) close and (b) near
cl . packmg owing to the coynpressm]_l, it, seemed contacts beiween spheres. The areas of adherent black paint
desirable to repeat the experiment with a larger are marked

number of approximately rigid spheres. Acecordingly,
these were now replaced with }-in. ball bearings,
about 1,000-5,000 in. number in different experiments,
well shalen down and compressed by winding round
with thick rubber bands. This assembly appeared
to be rigid, its occupied volume of 0:62 indicated a
reasonable approximation to Scott's close-packed
density, considering its limited size.

Table 1. ANALYS1S OF (LOSE AND NEAR CONTACTS
(a) From assembly in random close packing

Number of close contacts
1 2 3 4 o Total Close
contacts  contacts
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11 0 | —

| e to contain another ball. About 400-500 of these
Number of balls 478

balls. takan from the ecentre of the anhere to avoid
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COMPUTERS MAKE THIS EASIER!
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Studies in Molecular Dynamics. I. General Method*

B. J]. Aupgr Axn T. E. WAINWRIGHT
Lawrence Radiation Laboratory, University of California, Livermore, California
(Received February 19, 1939)

A method is outlined by which it is possible to calculate exactly the behavior of several hundred inter-
acting classical particles. The study of this many-body problem is carried out by an electronic computer
which solves numerically the simultaneous equations of motion. The limitations of this numerical scheme
are enumerated and the important steps in making the program efficient on the computers are indicated.
The applicability of this method to the solution of many problems in both equilibrium and nonequilibrium

statistical mechanics is discussed.
MICCoM
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WHY DO WE WANT TO CONDUCT MOLECULAR
SIMULATIONS?

1. To predict properties of (new) materials
2. To understand phenomena at a molecular level
3. To model known phenomena?

Why would we model the

melting point of water?

Do this to test models and methods.
[Verification and Validation!] J

Intro to MD
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CONNECTION TO EXPERIMENTS

rea? —  build __ mOd?]
materials models materials
perform computer simplified
experiments  simulations theories
CXPOT. model theor.
data data prediction
compare compare

! !

validated verified
models theories

~ Adapted from Allen and Tildesley,
new understanding and insights “Computer Simulation of Liquids”

MICCoM
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PHASE SPACE

State vector or system point in a constant-volume system
Is defined as

E:: (X,P) — (Xlg--°7XN;p17°")pN)

“6N’-dimensional set Q from which E takes a value Is
called the phase space of the system

Apoint £in Q Is a microstate of the system.

If Z iIs known at any time, it is completely determined for

all other times (past and present) through the classical
equations of motion.

Intro to MD
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MD ALGORITHMS

= An MD simulation generates a connected trajectory of points
In phase space.

= The motion is given by Hamilton’s equations (which are
essentially Newton’s equations)

Hexip) = UG+ K(p)
).{’L' — 8pé-H — mzq;
Pi — T ox; —F;
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MICROSTATES, MACROSTATES AND
ENSEMBLES

Systems with different microstates may exist at the same
thermodynamic state.

Example: Many different sets of (x; p) can be at

the same temperature and volume.

A thermodynamic state is a collection of many different

microstates.

 Identical in composition and at the same “macrostate”

 Gibbs called this collection an “ensemble”; NVE is
natural for MD

 “macrostate” has a definition in terms of statistical labels
as well, we will come back to this for “advanced
sampling”

Intro to MD
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OBSERVATION: COMPUTING AVERAGES IN
MOLECULAR SIMULATIONS

To compute the average of a quantity f, you can:

1. Observe a single trajectory £(t) as it passes through
phase space Q, and compute {f), = v~ [ f(t)dt.
This is how molecular dynamics (MD) works.

2. Take snapshots of the constant energy hypersurface
={E € Q|H(E) = E} at various times and compute
(fnve = %Zif(.?.i). This is the principle behind
Monte Carlo (MC).

Ergodic hypothesis: both methods are equivalent.

For swift sampling, we’ll make use of both!
Intro to MD o MICCoM
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NVE? SURE, THE UNIVERSE IS CONSTANT-

ENERGY...

...but most systems of interest are not studied this way.
Why not?

 The Universe Is isolated, but most systems have
thermal contact with others, through which energy
may be exchanged.

e Systems may exchange volume or particle number
with surrounding environment in order to reach
equilibrium (constant P, u)

NVE Is the natural ensemble for molecular dynamics,
however; so what are we to do?

Intro to MD . M'CCOM




ENSEMBLES
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ENSEMBLES

Assumptions: The “universe” is fixed volume (sorry cosmologists!) and total
energy (sum of system and universe) is constant.

Intro to MD 13 M'CCOM




PROBABILITY

= Suppose we have a known state with
energy E, in system A, and energy E;q¢
overall.

Euniv — Etot — EA

» Setting the state of A forces the
surroundings to adopt a known energy,
which can occur in multiple ways.

» Denote W;(E) to be the “density of
states in system i; the number of ways
the energy can be partitioned. Each of
these states is equally likely when the
total energy is fixed.

Intro to MD ”
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PROBABILITY

= What is the probability of system A
having energy E;?

L. _ sum of microstates with Fa=F;
P(EA o E"') sum of all microstates

B _ Waniv (Etot —FE3)
= WA(ET:) Ej Wa(E;)Wuniv(Etot —Ej)

IOg(P(EA — E@)) — log ( WA(Ei)Wuniv(Etot - Ez) )

Zj Wa (Ej)Wuniv (Etot - Ej)

] 8 log Wuniv(Etot)

log WUﬂiV(EtOt - Ei) ~ log Wuniv — E; 9E + O(I/Etot)
tot
: . . — A W~ ' _ﬁEi
IWumV(Etot E’f.) ~ Winiv (Etot)e I

“Boltzmann

distribution”

Intro to MD 15 MICCOM




Probability of finding the system in microstate i is

P

€
N D e~ BE; VA
and defines the “partition function” Z.

Average of any property Ais
Aie_ﬁE

In particular energy...

E; —BE
(E) = ZPz-Ez- - Z GZ

Intro to MD

)

)

6 MICCoM



Re-write this last expression

0 log (Zz e_’@Ei)

E —
< )NVT 8,8
Olog Z
E —
(B)NvT 95
OA/T
| E=U=
Classical thermo... o(1/T)
Helmholtz energy related A= —kgT log Z

to log of partition function

This Is a general formula for any ensemble; free energy Is

related to the logarithm of an ensemble partition function.

Intro to MD 17 MICCOM



CAN Z BE COMPUTED?

Given a partition function, all thermodynamics of the
ensemble are specified. Can we directly compute partition
function?

Assume a 2-state system (“up” or “down”). Number of
configurations for N “particles™?

2N
So for N=100, must make 219 evaluations ~ 1 X 1030,

This Is impossible! Thus, we resort to averaging in
classical MD and MC.

| MD
ntro to . MiCCoM




FUNDAMENTALS OF MD

= Consider a particle within a one dimensional Gaussian well

at constant temperature. The potential energy is
x2

U(x) = Uye 202

on the domain x € [—1,1] with Uy = —2 and o = 0.2:

1

— How do | compute (x)? os f

— What is (v)? N |
— What should P(x) look like? 1 .

25}

Ux) ——

-3

-1 -0.5 0 0.5 1
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DEMONSTRATION OF ERGODICITY
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PAIR INTERACTIONS

= Most of the interactions we think of normally are pair interactions; these are
easiest to consider in thinking about extra-molecular systems (interior to the
molecule, other forces contribute).

‘Hard S phere )
Lennard-Jones
van der Waals

05 az:4(s) - 1
S
Ux)= > Upair(ty) 5 °
pairs ,j 0s

0.8 1 12 14 16 1.8 2 22 24

rin
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MOLECULES

i zjk zjk.’. ) )
U(X Z Upa.lr (r""-? + Z bond r’ﬂj )+ § : angle rz_;- 3 rjk + E dlhedral (Xz, Xj, Xk, X;)
pairs 1,j bonded 1i,j angles dihedrals

http://cbio.bmt.tue.nl/pumma/index.php/Theory/Potentials
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BACK TO THE EQUATIONS OF MOTION

»\What are the minimal requirements for an integrator?

= To faithfully integrate Newton’s equations, we must have an

Integrator which is time reversible and conserves energy.
* NVE Molecular dynamics should run in forward or reverse.

" F F F F F #

http://lammps.sandia.gov

, MICCoM

Intro to MD



INTEGRATION

= Start with a Taylor approximation of the positions and
velocities

x(t 4+ 6t) = x(t) + v(t)ot + %a(t)(ﬁtz -+ %j(t)&f?’ + ...

v(t + 6t) = v(t) + a(t)dt + %j(t)&z + .-

» Simplest method is to truncate each series at the first order.
This is Euler’'s method.
x(t + 6t) = x(t) + v(t)dt
v(t + 6t) = v(t) + a(t)ot

Intro to MD 24 MlCCOM



PERFORMANCE: EULER INTEGRATOR

* The harmonic oscillator is exactly solvable. Given an initial
condition x(0), v(0) the solutions should be sine waves. For
m = k = 1, starting from rest:

x(t) = x(0) cos(t)
v(t) = x(0) sin(t)
* The trajectory of v(t) and x(t) should trace a circle.

= Since cos?t + sin“t = 1 the energy

1 1
E=_2 T2
217 +2X

IS conserved.

Intro to MD - M'CCOM



PERFORMANCE: EULER INTEGRATOR

20 ! ' ' ' §=0001 ——
15 | 0.010 ——
0.100
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PERFORMANCE: EULER INTEGRATOR
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PERFORMANCE: EULER INTEGRATOR

100

St =0.001 ——
0.010 ——
90 r 0.100 ——
80 |
M
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INTEGRATION Il

= One can improve on this by utilizing the Verlet integrator.
Begin by writing the Euler propagation in forward and
reverse directions

r(t+ ot) =r(t) + v(t)dt + %a(t)&“z + %j(t)StS T ...

1 1
r(t —ot) =r(t) —v(t)dt + Ea(z:)(szsz — gj(t)6t3 1.

= Note that summing these together eliminates terms of §¢3
from the expression. Errors in the integration of positions.
Since we know acceleration explicitly from the force field,
will be order §t*.
r(t + 8t) —r(t — 8t) = 2r(t) + a(t)5t?

Intro to MD 2 M'CCOM



PERFORMANCE: VERLET INTEGRATOR

20 5t =0.001 ——
51 | 0.010 ——
0.100
1000 -
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PERFORMANCE: VERLET INTEGRATOR
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PERFORMANCE: VERLET INTEGRATOR
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VARIATIONS

= A more common form of the Verlet algorithm utilizes a “half-
step” velocity. This is the integrator used in LAMMPS.

1
x(t +6t) = x(t) + v(t)6t + Ea(t)(Stz

2
a(t + 6t) = f(t + 6t) = —VU(Z(t + 6t))

. &t . 1.
% (t + —) =v(t) + za(t)&t

R R ot\ 1,
v(t + 6t) = v(t+?)+§a(t+6t)

Intro to MD - M'CCOM



. # 3d Lennard-Jones melt in periodic box
CASE STUDY:

# set name for this simulation

CHOOSING A variable NAME index melt # name style value
# set log file name

TIMESTEP log ${NAVE} . Log

# configure and initialize system

units 1j

atom_style atomic

pair_style 1j/cut 2.5 # style args(=cutoff)

boundary p p p # x vy z (p = periodic boundary conditions)

lattice fcc 0.8442 # style scalel=reduced_density)
region MYBOX block © 10 @ 10 @ 10 # ID style args(=xlo,xhi,ylo,yhi,zlo,zhi)

l_EEf]r]Eir(j-\]()r]EBES qufalt create_box 1 MYBOX # number_of_atom_types region_ID
LJr]itE; are f;tfir](jfir(j: create_atoms 1 box # atom_type style args

mass 1 1.0 # atom_type mass
velocity all create 3.0 87287 # group_ID style args(=temp,seed)

Energy: €

# set forcefield parameters

l_Ear]gytf]: o pair_coeff 1 1 1.0 1.0 2.5 # atom_1 atom_j args(=epsilon,sigma,cutoff)

pair_modify shift yes
palr_ ¥ Y

PVquE;SS' m # configure neighbor lists
|fn . [ [ ] neighbor 8.3 bin
Time: o m/ € neigh_modify every 20 delay @ check no

# configure integrator
fix NVE all nve # ID group_ID style
timestep TS # The default timestep size is 8.005 for LJ units.

# configure output of atom-specific trajectory data (e.g. coordinates)
dump DUMP all atom 50 ${NAME}.lammpstrj # dump_ID group_ID style interval file args
#dump_modify DUMP image yes # dump_ID keyword walue

# configure output of system property data
thermo_style custom step temp press pe ke etotal
thermo 58 # output_interval

# run simulation

run 25000 # number_of_steps
write_restart ${MAME}.restart.*

Intro to MD




TEMPERATURE
3 ' ! ! ! 5t=0.001 ——
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TOTAL ENERGY
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= Simplest thermostat is rescaling, but this does not correspond to proper
NVT ensemble fluctuations.

THERMOSTAT ALGORITHMS T K

At Nﬁ —1To
o . —1 . af _ ]
= Berendsen: ¥i(t) = m; "Fi(t) 25 | T (1) 1] x(t)
.s —1 . —1 ~
= Langevin/Stochastic: X;(t) = m; "Fi(t) — v(0)x(t) + m; "Fi(t)

0 = m; 'Fi(t) — vi(t)x(t) + m; 'Fi(t)
(Fiﬂﬁ‘jy) = 2mn@-kBT05ij5(t’ - t)

~2 _ ~
= Nose-Hoover H = Di 4 U(X)+ 5—5 + (Nas — 1) kT log(s)

P. Huenenberger, Adv. Polym. Sci 173 (2005).
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COMPARISON OF THERMOSTATTING ALGORITHMS

MD MC SD A HE W HG B NH

Deterministic + — = = + + + + +
Time—reversible  + - — - + + + — 4
Smooth + — + — + + + 4+ 4+
Energy drift + - — — + — — — _
Oscillations — = - — — — — — +
External d.o.f. + + — — + + + + +
Constrained K — - - — + + + — —
Canonical in H - — + + — — — — +
Canonical in ¥  — + + + + + — — +
Dynamics ++ - ++ - — — — o
Eqn. of motion 15 17 41 46 51 52 57 78,79

P. Huenenberger, Adv. Polym. Sci 173 (2005).
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COMPARISON (INCLUDING NAIVE TEMPERATURE

SCALING)

nh

berendsen

langevin

2F rescale
18 |
16

I_
14
12
1 -
0.8
10 100 1000 10000 100008

timestep
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SUM

» Molecular Dynamics is a powerful tool for obtaining
iInformation about molecular model systems.

= All-atom systems access tens of nanometers in length and
hundreds of nanoseconds in time; this can be accelerated
through coarse-graining methods. The use of advanced
sampling algorithms can also make the most of the limited
time (we’ll see how shortly).

* The MD simulation protocol requires you to
— Choose a model to simulate
— Build a system
— Choose an ensemble

— Choose an integrator [or, have one chosen for youl]
— Measure averages for the trajectory

= Next Up: Accessing larger length scales, time scales, and free energy
computation!

Intro to MD 20 M'CCOM
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